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Purpose: To investigate deep reinforcement learning (DRL) based on historical treatment plans5

for developing automated radiation adaptation protocols for non-small cell lung cancer (NSCLC)
patients that aim to maximize tumor local control at reduced rates of radiation pneumonitis grade
2 (RP2).
Methods: In a retrospective population of 114 NSCLC patients who received radiotherapy, a 3-
component neural networks framework was developed for deep reinforcement learning (DRL) of10

dose fractionation adaptation. Large-scale patient characteristics included clinical, genetic, and
imaging radiomics features in addition to tumor and lung dosimetric variables. First, a generative
adversarial network (GAN) was employed to learn patient population characteristics necessary for
DRL training from a relatively limited sample size. Second, a radiotherapy artificial environment
(RAE) was reconstructed by a deep neural network (DNN) utilizing both original and synthetic15

data (by GAN) to estimate the transition probabilities for adaptation of personalized radiotherapy
patients’ treatment courses. Third, a deep Q-network (DQN) was applied to the RAE for choosing
the optimal dose in a response-adapted treatment setting. This multi-component reinforcement
learning approach was benchmarked against real clinical decisions that were applied in an adaptive
dose escalation clinical protocol. In which, 34 patients were treated based on avid PET signal in the20

tumor and constrained by a 17.2% normal tissue complication probability (NTCP) limit for RP2.
The uncomplicated cure probability (P+) was used as a baseline reward function in the DRL.
Results: Taking our adaptive dose escalation protocol as a blueprint for the proposed DRL
(GAN+RAE+DQN) architecture, we obtained an automated dose adaptation estimate for use at
∼ 2/3 of the way into the radiotherapy treatment course. By letting the DQN component freely25

control the estimated adaptive dose per fraction (ranging from 1 ∼ 5 Gy), the DRL automatically
favored dose escalation/de-escalation between 1.5 ∼ 3.8 Gy, a range similar to that used in the
clinical protocol. The same DQN yielded two patterns of dose escalation for the 34 test patients,
but with different reward variants. First, using the baseline P+ reward function, individual adaptive
fraction doses of the DQN had similar tendencies to the clinical data with an RMSE= 0.76 Gy; but30

adaptations suggested by the DQN were generally lower in magnitude (less aggressive). Second, by
adjusting the P+ reward function with higher emphasis on mitigating local failure, better matching
of doses between the DQN and the clinical protocol was achieved with an RMSE= 0.5 Gy. Moreover,
the decisions selected by the DQN seemed to have better concordance with patients eventual out-
comes. In comparison, the traditional temporal difference (TD) algorithm for reinforcement learning35

yielded an RMSE= 3.3 Gy due to numerical instabilities and lack of sufficient learning.
Conclusion: We demonstrated that automated dose adaptation by DRL is a feasible and a promis-
ing approach for achieving similar results to those chosen by clinicians. The process may require
customization of the reward function if individual cases were to be considered. However, develop-
ment of this framework into a fully credible autonomous system for clinical decision support would40

require further validation on larger multi-institutional datasets.
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I. INTRODUCTION

Most non-small-cell lung cancer (NSCLC) patients are inoperable due to locally advanced disease or distant metas-
tases and thus radiation therapy (radiotherapy) becomes the main option for treatment of these patients. However,45

treatment outcomes remain relatively poor despite significant advances in the technologies of radiotherapy planning,
image-guidance, and delivery [? ]. It is conjectured that escalation of radiation dose is an option to improve treatment
outcome results. For instance, a dose increment by 1 Gy can lead to 1% improvement in local progression free survival
[? ]-[? ]. However, this has not always been demonstrated to be the case, as was learned from RTOG-0617 clinical trial
results, where dose escalation has led to surprisingly negative results [? ]. Though the specific causes of this negative50

finding are still being worked out, it is clear that dose escalation can not be employed using a one-size fits all approach
to the patient population. While necessary for cancer treatment, radiotherapy provides cure but can also pose risks
that need to be tailored according to each individual patients characteristics. For treatment of lung cancer, a major
limiting constraint to dose escalation is the toxicity risk from thoracic irradiation that leads to radiation-induced
pneumonitis (RP). RP causes cough, fever, etc, and it affects the quality of life for patients even if the local control55

(LC) of the tumor is assured. Therefore, an important question that the current studies are attempting to address is:
can machine learning algorithms identify from patient characteristics an optimal dose schedule to render LC with max-
imally reduced RP in an individual patient? However, before attempting to address this challenging question, we need
to demonstrate that machine learning algorithms can actually be taught to mimic clinicians decision making processes.

60

With the latest advances in machine reinforcement learning (RL) algorithms, which provide better dynamic learning
options, we are poised to explore the feasibility of automated decision making for dose escalation in NSCLC patients.
Traditional machine learning methods have witnessed increased applications in radiotherapy including quality as-
surance, computer-aided detection, image-guided radiotherapy, respiratory motion management, and now outcomes
prediction [? ]. However, traditional machine learning methods may lack the ability to handle the dynamics of highly65

complex decision making process in a clinical radiotherapy environment. For instance, our institutional protocol
UMCC 2007-123 [? ]-[? ] defines dose escalation under a sophisticated adaptation policy (see Sec.??) towards
improved treatment outcomes. Thus, it could be utilized as a suitable testbed to assess our proposed RL methods
for automated radiation adaptation. The rationale for utilizing reinforcement learning in automating radiation dose
adaptation is that it allows exploration of all possible paths into the future so that expected benefits and risks can70

be weighed into the decision making process. In an analogous fashion such as playing chess or board games, the
decision maker needs to explore the consequences of the next moves and develop an optimal strategy to win the game,
which in our case is controlling cancer while reducing treatment side effects. To realize this task within the complex
radiotherapy environment, we developed dynamical procedures to utilize the existing historical treatment plans to
represent the radiotherapy environment (Sec. ??), where the states within this environment are defined as predictor75

factors of local control (LC) and radiation-induced pneumonitis (RP) responses.

In recent years, deep learning applications have gained success in variety of fields including video games, computer
vision, and pattern recognition. A key factor in this success is that deep learning can abstract and extract high-level
features directly from the data. This helps avoid complex feature engineering or delicate feature hand-crafting and80

selection for an individual task [? ]. Recent studies have demonstrated that using a class of deep learning algorithms
based on convolution neural networks can efficiently replace traditional feature selection in image segmentation while
at the same time providing superior performance [? ]-[? ]. These strengths motivated Google DeepMind’s incorpo-
ration of deep neural networks (DNN) into the known Q-learning search algorithm of RL [? ], which enabled it to
master a diverse range of Atari games with human-level performance using the raw pixels and scores as inputs [? ].85

The DQN algorithm has been shown to display actions similar to human instincts in playing these games. Such ability
was demonstrated by AlphaGo when it dethroned the world champion of the ancient Chinese game GO, a 19×19 grid
board game considered to have intractable (316! ≃ 10678) possibilities. The sheer complexity of GO renders the ability
to make human decisions from intuitive intelligence indispensable for playing properly and having a credible chance
at winning. This study tends to pursue the characteristic of intuition-driven decisions in the DQN for mimicking90

and comparing clinicians dose adaptation decisions in treatment planning. However, there are millions of records
with detailed moves of previously played games that could be used in training the DQN algorithm; this is a luxury
that we do not possess in the clinical or the radiotherapy world. Therefore, we also incorporated new developments
in deep learning for generating synthetic data to help meet the goal of training automated actions owing to the
demand of high-sample-size requirement by the DQN. Specifically, we deployed 3 different DNNs to tackle several95

problems in building a machine learning approach for completing automation of clinical decision making for adaptive
radiotherapy, see Fig. 1(b). The first DNN (GAN, Sec.II E) aims to generate sufficiently large patient data from
existing small-sized observations for training the simulated radiotherapy environment. The second DNN is tasked to
learn the radiotherapy environment, i.e., where and how states would transit under different actions (dose fraction
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modifications) based on the data synthesized from the GAN and real clinical data available, Sec. ??. The third100

DNN is the innovative DQN itself responsible for prompt and accurate evaluation of the different possible strategies
(dose escalation/de-escalation) and optimizing future rewards (radiotherapy outcomes). In contrast, classical RL
methods such as the model-free temporal difference (TD) algorithm [? ], which require a sufficiently larger number
of observations to be sampled and high consistency in the states (variables) and actions (decisions), do not fit well
with the complex, real clinical radiotherapy environment where the data are noisy and complete information may105

be missing as well as limited sample size. Moreover, clinical decisions are in general likely to be more subjective
than objective. These are some of the hurdles that our approach based on the 3-component DNN design attempts to
overcome. We believe that the proper integration of these three components based on deep learning is essential for
building a robust RL environment for decision support in radiotherapy adaptation.

110

In previous work [? ], Kim et al. developed a Markov decision process (MDP) from the perspective of analytical
radiobiological response to compute optimal fractionation schemes in radiotherapy. The MDP design was based on
delicate assumptions on the latent behavior of the tumor and the organs-at-risk (OAR) with respect to given dose.
Several numerical simulations were presented and their behavior, based on the assumptions made, were discussed
but no realistic clinical scenarios were evaluated. Another similar approach based on analyzing stochastic processes115

of reinforcement learning with TD techniques [? ] was used to dynamically explore the transition probability with
varying fractionation schedules. Based on simplified radiobiological assumptions, different reward (utility) functions
were tested in preclinical cell culture data to nonuniformally optimize the prescribed dose per fraction [? ].

Here, implementation details and network architectures are described and organized as follows. In Sec. II, we120

succinctly introduce the methods and rationale of our utilization; Sec. ?? demonstrates the results of the different
components of our proposed approach and their benchmarking against real clinical protocol results. In Sec. ?? and
Sec. ??, we summarize our methods presentation as an integrated system and discuss future potential developments
as well as the limitations of our current study.

II. MATERIALS AND METHODS125

A. Overview

In our investigation to apply DQN for escalation of dose in NSCLC data, we first faced the obstacle of the absence
of a well-characterized radiotherapy environment (i.e., the rules of the game) as shown in Fig. 1(a) and Fig. ??. This is
unlike the case of applying DQN to board games where complete information of the game rules are defined beforehand
and also one can play the game repeatedly almost at no real cost. In the case of patient care in general or radiotherapy130

specifically, this would be ethically and practically prohibitive due to the consideration of patients’ safety and the cost
of time. To alleviate this difficulty, we developed a radiotherapy artificial environment (RAE), also referred to as the
(approximate) transition DNN in Sec.?? for simulating the radiotherapy treatment response environment. Due to the
limited available sample size, we combined the GAN with the transition DNN to support the fidelity of reconstructing
a RAE. As the GAN can generate synthetic patient data very similar in its characteristics to the real ones, we then135

trained the RAE with mixed data; the synthesized data by the GAN and the available real clinical data. After the
reconstruction of the radiotherapy environment, we introduced the DQN agent (decision maker) into this environment
to interact with it, as indicated in Fig. 1(b) and evaluated its performance by learning the adaptive behavior of a dose
escalation clinical protocol conducted successfully in our institution and recently published in JAMA Oncology [? ].

B. Datasets140

We used historical treatment plans of 114 NSCLC patients for training our 3-component DRL for decision support
of response-based dose adaptation. The patients had been treated on prospective protocols under IRB approval
as described in [? ]. All tumor and lung dose values were converted into their 2 Gy equivalents (EQD2) by an
in-house developed software using the linear-quadric model with an α/β of 10 Gy and 4 Gy for the tumor and
the lung, respectively. Generalized equivalent uniform doses (gEUDs) with various parameters a were calculated145

for gross tumor volumes (GTVs) and uninvolved lungs (lung volumes exclusive of GTVs). Blood samples were
obtained at baseline and after approximately 1/3 and 2/3 of the scheduled radiation doses were completed. A total of
250 features including dosimetric variables, clinical factors, circulating microRNAs, single-nucleotide polymorphisms
(SNPs), circulating cytokines, and positron emission tomography (PET) imaging radiomics features before and during
radiotherapy were collected. Pre-treatment blood samples were analyzed for cytokine levels, micro RNAs (miRNAs),150
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(a)How to let the DQN interact with
limited-sample-sized data of the historical patient

population treatment?

(b)A 3-component DNN solution is proposed to (1) generate
synthetic data through GAN to (2) model the radiotherapy
environment by the transition DNN that is used by (3) the

DQN to make optimal decisions for adaptation of dose.

FIG. 1. A 3-component DNN solution to overcome limited sample size and model the radiotherapy environment for DRL
decision making.

and single nucleotide polymorphisms (SNPs), which have been identified as candidates from the literature as related
to lung cancer response. FDG-PET/CT images were acquired using clinical protocols and the pre-treatment and intra-
treatment PET images were registered to the treatment planning CT using rigid registration. The image features
analysis was performed using customized routines in MATLAB and the features included metabolic tumor volume,
intensity statistics, and texture-derived metrics [? ? ]. Part of this population, with dose adaptations at ∼ 2/3 of155

the way through treatment as served by Protocol UMCC 2007-123 [? ]-[? ], are described in Sec. ??. Nine predictive
features, defined in (??) with characteristics described in TABLE. ??, were selected for modeling the RAE. These
features are related to LC and RP2 responses based on Markov blankets and Bayesian analyses as detailed in [? ]
and briefly reviewed below.

C. Variable Selection for simulating radiotherapy environment160

In order to define the radiotherapy environment via a large-scale variable list, we used techniques based on Bayesian
network graph theory, which allows for identifying the hierarchical relationships among the variables and outcomes
of interest. The approach we used is based on identifying separate extended Markov blankets (MBs) for LC and
RP2 from the above high-dimensional dataset of 297 candidate variables. An MB of LC (or RP2) is the smallest set
containing all variables carrying information about LC (or RP2) that cannot be obtained from any other variable165

(inner family); then for each member in the blanket of LC (or RP2), a next-of-kin MB for this member was also derived
using a structure learning optimization algorithm [? ]. The algorithm combines efficient graph-search techniques with
statistical resampling for robust variable selection [? ]. The selected variables by this approach are summarized in
(??). It should be emphasized that the purpose of this step is to provide an approximate radiotherapy environment
that would allow simulating transitions between its states when the DQN agent is making decisions.170

D. Deep Neural Networks

We mainly utilized deep neural networks (DNNs) for our proposed DRL approach and the main notations used are
summarized here for convenience. Denoting data {xi} with labels {yi} such that X = {(xi,yi) |xi ∈ Rn, yi ∈ Rm, i =
1, . . . , N}, a DNN finds a function fDNN : Rn → Rm to weave through the data such that fDNN(xi) ∼= yi as much
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as possible via the utility of three distinct components: neurons zi ∈ R, layers of k neurons z = (z1, . . . , zk), and175

activation functions σ, see Fig. ?? (left). If a DNN has layers j = 0, . . . , ℓ, each of which has nj neurons, then j = 0
and ℓ would denote the first (input) and final (output) layer, respectively. An activation function σ : Rnj−1 → Rnj

connecting the neurons of the (j − 1)th layer z(j−1) ∈ Rnj−1 and those of the jth layer zj ∈ Rnj would satisfy:

z(j) = σ
(
Θ(j−1) · z(j−1) + b(j−1)

)
(1)

where Θ(j−1) ∈ Rnj×nj−1 and b(j−1) ∈ Rnj−1 represent the unknown weights and biases to be estimated. A typical180

choice of σ is a sigmoid or a rectified linear unit (ReLU), where we empirically choose σ = eLU [? ] in this study for
better convergence. Our best parameters {Θ(j),b(j)}ℓ−1

j=0 are then derived from the forward dynamics and backward
(error) propagation resulting from the DNN loss function [? ]:

L(Θ, z, λ) =
1
2
∥y − z(ℓ)∥2 −

ℓ∑
j=1

⟨
λ(j−1), z(j) − σ

(
Θ(j−1) · z(j−1) + b(j−1)

)⟩
(2)

where λ(j−1) ∈ Rnj−1 are the Lagrange multipliers at layer j − 1 to preserve layerwise information (1).185

In this study, we primarily rely on the universality of DNNs to model the dynamic complexity hidden in the
radiotherapy data. This universality refers to the capability of a neural network to approximate any continuous
function (on a compact subset of Rn) with suitable activation functions [? ]. Due to limited patient sample size,
we implemented random dropouts on neurons to efficiently mitigate overfitting [? ] throughout. In such scenario,
randomly selected neurons are assigned zero weights, which is a form of regularization to prevent the network from190

over-adaptation (overfitting) to the data during training process.

E. Generative Adversarial Nets

To alleviate the problem of small sample size in clinical datasets when modeling the complex state transitions
in a radiotherapy environment, we utilize generative adversarial nets (GANs) [? ] to synthesize more radiotherapy
patient-like data. A GAN consists of two neural nets, one of which is generative (G) and responsible for generating195

synthetic data, and the other one is discriminative (D), which tries to measure the (dis)-similarity between the
synthesized and real data as shown in Fig. 2. The basic underlying idea is simple: by learning to confuse D, G can
get more sophisticated in generating similar data through the following setup.

FIG. 2. GAN is used to generate new data, where G asks D to verify the authenticity of the data source. From latent points
z, generated patients are synthesized as x̃ in G. With y = (x, x̃) mixing with real and the generated patient data, D is trying
to verify its source.

Denote the space X ⊇ {x ∈ Rn} containing the (original) dataset with distribution x ∼ Pdata, and there is a latent200

space Z = {z ∈ Rm} with a prior distribution z ∼ Pprior, where in our case a Gaussian distribution is assumed.
The generative network G : Z → X tries to learn a map from Z to X such that an induced probability distribution
PG = Pprior(G−1) · |det

(
∂G−1

∂x

)
| on X is close to the original Pdata. The discriminative network D : X → R then

simultaneously learns to discriminate observations from the true data and the synthesized data generated by G. In
general, G aims at generating indistinguishable data to confuse D, whereas D attempts to distinguish the data205

produced by G or not. They interact with each other in a competitive sense, hence the name GAN. The adversarial
characters of D and G are created via the loss function of two-player mini-max game:

min
G

max
D

L(D, G) = min
G

max
D

Ex∼Pdata(x) [log D(x)] + Ez∼Pprior(z) [log(1 − D(G(z))] , (3)

where D(y) =


1, y is real
1/2 y is indistinguishable
0, y is generated

.

Subsequently, we introduce the algorithm for generating synthetic data for building our DRL for dose adaption.210
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F. Deep Q-Networks

We are applying reinforcement learning to mimic how physicians decide dynamically on the dose fraction trade-offs
needed to prescribe to a certain patient. In reinforcement learning, there is the environment (an MDP) and an
agent (an optimal action search algorithm). An agent takes charge of delivering actions a ∈ A in an environment,
which is a world described by the various states s ∈ S in the environment. Upon a decision made under a current215

state π : S → A, an agent receives corresponding reward R and gets promoted to another state. The transition
between states and rewards R are feedback for the agent to perceive how to optimize its subsequent strategy for
future actions. In our setting, an artificial agent would provide a second opinion or take place of a physician to deliver
actions. Specifically, in this study, we will evaluate the required dose per fraction (adaptation) in the second period
of a dose-escalation radiotherapy treatment course. This agent will then interact with the radiotherapy artificial220

environment (RAE) reconstructed by the transitional DNN, Fig. 1(b), and adjust its own adaptation strategy based
on received feedback.

Reinforcement learning is essentially formulated as a Markov decision process (MDP), denoted by (S,A, P, γ, R),
where S = {(x1, . . . , xn) ∈ Rn} be the space of states, A is the collection of actions, R : S × A → R is the reward225

function, and P : (S × A × S, Ω) → [0, 1] is the transition probability function between two states under an action
a ∈ A with Ω a σ-algebra of S × A × S that naturally induces a conditional probability Psa(t) ≡ Prob(t |s, a) ≡
P (s, a, t )/P (s, a) on space of next states t ∈ S from previous observation (s, a) ∈ S×A. A sequence of actions acting
on an initial state s0 ∈ S leads to the dynamics of an MDP:

s0
a0−→ s1

a1−→ s2
a2−→ · · · .230

The Q-learning search algorithm is a common method to find an optimal policy given an MDP or an RAE in our
case, where a Q-function is defined as the average discounted sum of rewards R in all future steps from current state
s

under a policy π : S → A as in (4). The expectation value is considered in the sense of computing all possible paths
starting from current state s to represent all possible benefits received in the future. A discounting factor 0 ≤ γ ≤ 1235

diminishes how we perceive future profits, providing a trade-off between the importance of immediate reward versus
future ones, i.e., short-term responses versus long-term outcomes.

In Q-learning, an optimal policy π∗ : S → A is defined such that Qπ∗
= maxπ Qπ is satisfied when the value

iteration scheme is adapted for computation. Via the Bellman’s equation of off-policy, the estimation of optimal Qπ∗
240

is converted into an iterative sequence {Q̃i}∞i=1 → Qπ∗
defined by [? ]:

Qπ(s, a) = E

[ ∞∑
k=0

γk R(sk, π(sk))
∣∣∣π, s0 = s, a0 = a

]
(4)

Q̃i+1(s, a) = Et∼Psa

[
R(s, a) + γ max

b∈A
Q̃i(t, b)

]
. (5)

Upon the contraction mapping theorem [? ], the convergence is reached at the unique fixed point as i → ∞,245

Q̃∗(s, a) = Et∼Psa

[
R(s, a) + γ max

b∈A
Q̃∗(t, b)

]
. (6)

It can be noticed that computation of (5) can quickly become cumbersome when the cardinality |S| or |A| is large.
A recent solution proposed by Google DeepMind in [? ] and [? ] was to evaluate the Q-function efficiently using
supervised learning by DNNs by Q̃i = QΘi

DNN, where Θi denotes the weights of DNNs in (1) at ith iteration with a
sequence of loss functions Li(Θi) to be minimized where:250

Li(Θi) = E(s,a)∼ρ

[(
Et∼Psa

[
R(t, a) + γ max

b∈A
Q

Θi−1
DNN(t, b)

]
− QΘi

DNN(s, a)
)2

]
. (7)

where ρ is the probability distribution over policy sequences s and actions a also called the behaviour distribution.
The loss function (7) can be understood to pursue a DNN sequence {QΘi

DNN}∞i=1 such that
{
QΘi

DNN

}∞
i=1

→ {Yi}∞i=1

since (7) indicates:

Li(Θi) = E(s,a)∼ρ

[(
Yi(s, a) − QΘi

DNN(s, a)
)2

]
. (8)255


